Nucleotide excision repair (NER) machinery recruitment by the transcription-repair coupling factor involves unmasking of a conserved intramolecular interface.
نویسندگان
چکیده
Transcription-coupled DNA repair targets DNA lesions that block progression of elongating RNA polymerases. In bacteria, the transcription-repair coupling factor (TRCF; also known as Mfd) SF2 ATPase recognizes RNA polymerase stalled at a site of DNA damage, removes the enzyme from the DNA, and recruits the Uvr(A)BC nucleotide excision repair machinery via UvrA binding. Previous studies of TRCF revealed a molecular architecture incompatible with UvrA binding, leaving its recruitment mechanism unclear. Here, we examine the UvrA recognition determinants of TRCF using X-ray crystallography of a core TRCF-UvrA complex and probe the conformational flexibility of TRCF in the absence and presence of nucleotides using small-angle X-ray scattering. We demonstrate that the C-terminal domain of TRCF is inhibitory for UvrA binding, but not RNA polymerase release, and show that nucleotide binding induces concerted multidomain motions. Our studies suggest that autoinhibition of UvrA binding in TRCF may be relieved only upon engaging the DNA damage.
منابع مشابه
GCN5 and E2F1 stimulate nucleotide excision repair by promoting H3K9 acetylation at sites of damage
Chromatin structure is known to be a barrier to DNA repair and a large number of studies have now identified various factors that modify histones and remodel nucleosomes to facilitate repair. In response to ultraviolet (UV) radiation several histones are acetylated and this enhances the repair of DNA photoproducts by the nucleotide excision repair (NER) pathway. However, the molecular mechanism...
متن کاملCellular ubiquitination and proteasomal functions positively modulate mammalian nucleotide excision repair.
The ubiquitin-proteasome pathway is fundamental to synchronized continuation of many cellular processes, for example, cell-cycle progression, stress response, and cell differentiation. Recent studies have shown that the ubiquitin-proteasome pathway functions in the regulation of nucleotide excision repair (NER) in yeast. In order to investigate the role of the ubiquitin-proteasome pathway in th...
متن کاملCloning of a human homolog of the yeast nucleotide excision repair gene MMS19 and interaction with transcription repair factor TFIIH via the XPB and XPD helicases.
Nucleotide excision repair (NER) removes UV-induced photoproducts and numerous other DNA lesions in a highly conserved 'cut-and-paste' reaction that involves approximately 25 core components. In addition, several other proteins have been identified which are dispensable for NER in vitro but have an undefined role in vivo and may act at the interface of NER and other cellular processes. An intri...
متن کاملA role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae.
Upon DNA damage, eukaryotic cells activate a conserved signal transduction cascade known as the DNA damage checkpoint (DDC). We investigated the influence of DDC kinases on nucleotide excision repair (NER) in Saccharomyces cerevisiae and found that repair of both strands of an active gene is affected by Mec1 but not by the downstream checkpoint kinases, Rad53 and Chk1. Repair of the nontranscri...
متن کاملThe conserved factor DE-ETIOLATED 1 cooperates with CUL4-DDB1DDB2 to maintain genome integrity upon UV stress.
Plants and many other eukaryotes can make use of two major pathways to cope with mutagenic effects of light, photoreactivation and nucleotide excision repair (NER). While photoreactivation allows direct repair by photolyase enzymes using light energy, NER requires a stepwise mechanism with several protein complexes acting at the levels of lesion detection, DNA incision and resynthesis. Here we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 9 شماره
صفحات -
تاریخ انتشار 2012